Archive
Creativity and the Human Brain
Creativity. It’s harder to define and measure than intelligence but is equally (or perhaps more) important. Why? Creativity occurs in many places and has many forms: imaginative solutions to everyday problems; life-changing breakthroughs in science, technology, and mathematics; masterpieces in literature and art.
What else? The act of creation is involved at every step of human-induced disruptive change. It is through such acts that most new and great things start. Bottom line, creativity is the foundation for much of the progress of humanity and society.
But what is creativity? To keep things simple, consider the dictionary.com definition: “the ability to transcend traditional ideas, rules, patterns, relationships, or the like, and to create meaningful new ideas, forms, methods, interpretations, etc.”
Next, how do you measure it? Not so easy and more subjective than measuring intelligence. Although there are others, the most commonly used series of tests are the Torrance Tests of Creative Thinking (TTCT). (1) Not perfect, but not influenced by race or socioeconomic status and good enough to allow meaningful research into creativity and the brain.
So, creativity and the brain. What is happening in the brain during that “aha” moment? What allows one to have a flash of insight, to originate truly innovative new ideas? Whatever it is that generates that spark, can we create it and/or control it? These are some of the questions that brain research is investigating.
First, some “history.” Until recently, the common tools for studying the brain during that moment of creativity were positron emission tomography (PET) scans and electroencephalograms (EEG). A key study using these techniques in 2001 showed brain activity and changing interconnections taking place in both frontal lobes during the “creative” moment: “Reorganization in both frontal lobes (BA 8–11,44–47) is of major significance as is the functional integration of brain structures of both brain structures of both hemispheres.” (2) In other words, things are not as simple as “right-brain” being the creative side. Both sides of the brain are involved. This was a first step in connecting creativity and brain function.
Now fast forward to the era of advanced neuroimaging techniques such as functional magnetic resonance imaging (fMRI). A 2013 study at Dartmouth using fMRI identified multiple regions of the brain interconnected by widespread and changing networks of neurons among these regions as important for creativity. (3) In their own words: “We do not know how the human brain mediates complex and creative behaviors such as artistic, scientific, and mathematical thought. Scholars theorize that these abilities require conscious experience as realized in a widespread neural network, or ‘mental workspace,’ that represents and manipulates images, symbols, and other mental constructs across a variety of domains…The present work takes advantage of emerging techniques in network and information analysis to provide empirical support for such a widespread and interconnected information processing network in the brain that supports the manipulation of visual imagery.”
A good summary of this study and a number of other neuroimaging findings at this point in time can be found in a chapter of the book The Neuroscience of Creativity. (4) In the words of the authors relating to creativity: “Contrary to popular belief, specific brain regions are not committed to specific functions” (i.e., it’s not as simple as left-brain right-brain). And they go on to highlight studies that show creativity and intelligence are not the same, each having a different brain network.
The present. At the beginning of this year, a new fMRI study by Roger Beaty et al made headlines, partly because the study showed the ability to predict creativity. (5) As they state, “We identified a brain network associated with creative ability comprised of regions within default, salience, and executive systems—neural circuits that often work in opposition. Across four independent datasets, we show that a person’s capacity to generate original ideas can be reliably predicted from the strength of functional connectivity within this network, indicating that creative thinking ability is characterized by a distinct brain connectivity profile.” They go on to summarize their findings: “People who are more creative can simultaneously engage brain networks that don’t typically work together.” In their words: “What this shows is that the creative brain is wired differently.”
We end with that thought and the finding that intelligence and creativity are not the same. But what about genius? A topic for another day.
- Kyung Kim, “Can We Trust Creativity Tests? A Review of the Torrance Tests of Creative Thinking (TTCT),” Creativity Research Journal, 18, no. 1 (2006), 3–14, http://people.uncw.edu/caropresoe/GiftedFoundations/SocialEmotional/Creativity-articles/Kim_Can-we-trust-creativity-tests.pdf
- Bekhtereva et al, “Study of the Brain Organization of Creativity: III. Brain Activation Assessed by the Local Cerebral Blood Flow and EEG,” Human Physiology, 27, no. 4 (2001), 390–397, https://www.researchgate.net/publication/225894778_Study_of_the_Brain_Organization_of_Creativity_III_Brain_Activation_Assessed_by_the_Local_Cerebral_Blood_Flow_and_EEG
- Alexander Schlegel et al, “Network Structure and Dynamics of the Mental Workspace,” PNAS, 110, no.40 (October 1, 2013),16277-16282, http://www.pnas.org/content/110/40/16277.long
- Rex Jung and Richard Haier, “Creativity and Intelligence: Brain Networks That Link and Differentiate the Expression of Genius,” The Neuroscience of Creativity (Yale University Press 2013), 233-254, https://www.researchgate.net/publication/289892064_Creativity_and_Intelligence_Brain_Networks_That_Link_and_Differentiate_the_Expression_of_Genius
- Roger Beaty et al, “Robust Prediction of Individual Creative Ability from Brain Functional Connectivity,” PNAS, January 16, 2018, http://www.pnas.org/content/early/2018/01/09/1713532115
Intelligence and the Human Brain
What is human intelligence? How do you quantify it? These questions need to be addressed before discussing the connection between intelligence and the human brain.
So, first the definition. We all have our own ideas about what intelligence is. To keep things simple, we use the Encyclopaedia Britannica definition: “human intelligence is the mental quality that consists of the abilities to learn from experience, adapt to new situations, understand and handle abstract concepts, and use knowledge to manipulate one’s environment.”
Next, how do you quantify intelligence? Commonly, a combination of standardized tests is used to measure the abilities listed above and more. The results yield a number—the Intelligence Quotient (IQ). This number is what many people are familiar with as a measure of intelligence. However, IQ test results are somewhat influenced by social and cultural factors. Therefore, many researchers also use a measurement called the g-factor (general factor of intelligence). Measurements of additional abilities go into calculating the g-factor such as reasoning, memory, vocabulary, spatial ability, processing speed, and more. Studies have shown that the g-factor is strongly influenced by heredity (biological and genetic factors), but less affected by the environmental factors that influence IQ. Nevertheless, it has been shown that the IQ is a fair approximation of the g-factor, so brain research often involves either or both.
Now, how are intelligence and the human brain related? Using modern brain imaging techniques such as fMRI (Functional Magnetic Resonance Imaging) and PET (Positron Emission Tomography) scans to study brain activity, coupled with IQ and g-factor measurements, researchers are discovering brain characteristics that correlate with intelligence. These characteristics include the amount and distribution of grey matter and differences in neural networking. (1) As one study shows, in individuals with higher intelligence “the areas of the brain which are associated with learning and development show high levels of variability, meaning that they change their neural connections with other parts of the brain more frequently, over a matter of minutes or seconds.” The study goes on to say, “the more variable a brain is, and the more its different parts frequently connect with each other, the higher a person’s IQ and creativity are.” (2)
There are other interesting findings. For example, if one compares groups with different g-factors that solve the same problem, there is much higher brain activity in the people with the lower g-factors than those with higher g-factors. The interpretation is that the less intelligent people require much more brain activity to arrive at the solution. It also was found that when comparing a group of men with a group of women having the same IQ and g-factors, men showed completely different areas of brain activity than women when solving the same problem. This finding provides a clue on how to restore brain functions to people with brain injuries (i.e., by somehow redirecting brain activity through uninjured parts of the brain). (3)
Although the above examples of studies using brain scans are promising, many more years of brain research are expected to be required, first to obtain a much fuller understanding of how the different parts of the brain work together, and then to be able to use that information. If you are interested, Reference 3 provides a good, easy-to-read overview of advances in this field. And for more technical articles on brain networking and intelligence see References 4-7.
Why is all this important? Ultimately, a complete revolution in our way of life could be unleashed by the ability to manipulate brain functions—to repair brain injuries, cure/prevent mental illnesses, and even to make humans more intelligent. One more door, waiting to be opened, with an unknown future on the other side.
- Roberto Colom, Rex Jung, and Richard Haier, “Distributed brain sites for the g-factor of intelligence,” NeuroImage, 31 (2006) 1359-1365, https://static1.squarespace.com/static/538634aee4b0b15c0516a524/t/538774afe4b07a163543ab01/1401386159041/distributed-brain-sites-for-the-g-factor-of-intelligence.pdf
- University of Warwick, “Human intelligence measured in the brain,” com, July 18, 2016, https://www.sciencedaily.com/releases/2016/07/160718110938.htm
- Richard Haier and Rex Jung, “Brain Imaging Studies of Intelligence and Creativity: What is the Picture for Education?” Roeper Review, 30 (2008) 171-180, https://podcasts.shelbyed.k12.al.us/sspears/files/2015/01/Brain-Imaging-Studies-of-Intelligence-and-Creativity-What-is-the-picture-of-Education.pdf
- Michael Ferguson, Jeffrey Anderson, and R. Nathan Spreng, “Fluid and flexible minds: Intelligence reflects synchrony in the brain’s intrinsic network architecture,” Network Neuroscience, 1 (June 2017), no. 2,192-207, https://www.mitpressjournals.org/doi/full/10.1162/netn_a_00010
- Kirsten Hilger, Matthias Ekman, Christian Fiebach, and Ulrike Basten, “Intelligence is associated with the modular structure of intrinsic brain networks,” Scientific Reports, 7 (November 2017), Article no. 16088, https://www.nature.com/articles/s41598-017-15795-7
- Youngwoo Yoon et al, “Brain Structural Networks Associated with Intelligence and Visuomotor Ability,” Scientific Reports, 7 (2017), Article no. 2177, https://www.nature.com/articles/s41598-017-02304-z
- Aron Barbey, “Network Neuroscience Theory of Human Intelligence,” Trends in Cognitive Sciences, 22 (January 2018), no. 1, 8-20, https://www.sciencedirect.com/science/article/pii/S1364661317302218
Human Brain Research: Global Initiatives – An Update
In previous posts we have introduced the topic of brain research, attempted to explain its importance, summarized global initiatives focused on brain research, and described some of the new tools and technologies being used in brain research. In this post, we provide an update on the progress (or lack thereof) being made as a result of the global initiatives.
First, we focus on the “US BRAIN Initiative” that was launched in the spring of 2013. Since then, Congress has appropriated significant and increased levels of funding each year for this initiative. For 2018 this amounts to $400 million. The National Institutes of Health (NIH); working in partnership with government agencies, universities, foundations, and industry; uses this funding to award research grants in seven specific aspects of brain research. Information about funding, the alliances, and summaries of past and current grants can be found on the NIH Web site https://www.braininitiative.nih.gov/. It appears that the US BRAIN initiative is well funded, active, and starting to produce results.
Next, we turn to the European Union’s effort, also launched in 2013 – the “Human Brain Project” (HBP). Here, the news isn’t as positive, as the title of a 2015 article in Scientific American indicates: “Why the Human Brain Project Went Wrong—and How to Fix It. Two years in, a $1-billion-plus effort to simulate the human brain is in disarray…” (1) In a nutshell, the EU awarded $1.3 billion to one neuroscientist as the project leader for one big project – his. And things quickly fell apart. This led to a radical overhaul in management and project structure. As an IEEE article states “The massive €1 billion project has shifted focus from simulation to informatics.” (2) The article goes on to explain: “After a rocky, controversial start, the HBP is now building infrastructure that includes high-performance computing, data analytics, and simulation and modeling software.” But are things better? It’s hard to tell. However, a couple of things are clear. There is significant money available and there are a number of active research projects. Visit the Web site yourself and decide: https://www.humanbrainproject.eu/en/.
Now, an update on the smaller Japanese effort – the “Brain/MINDS Project,” initiated in 2014. A detailed description and interim update was published in 2016 which outlines structure, objectives, projects, and actual funding ($365 million spread over 10 years). (3) More information can be found on the Project’s Web site: http://brainminds.jp/en/. From all indications, the project has been active since 2014 and producing results.
Finally, we turn to China and their “China Brain Project” (announced in mid 2016). Detailed information on this “project” is difficult to find, but there are at least two specific actions:
- In the summer of 2017, China announced the opening of the HUST-Suzhou Institute for Brainsmatics in Suzhou China. With a 5-year budget of $67 million and plans to hire around 120 scientists and technicians, the objective of the Institute is to “make industrial-scale high-resolution brain mapping a standard tool for neuroscience.” (4) The Allen Institute for Brain Science, the Cold Spring Harbor Laboratory in New York, and Stanford University in California have formed partnerships with this new center.
- In March of this year, the Chinese Institute for Brain Research in Beijing was officially established. Around 50 researchers will have laboratories at the new center, and external grants will support around 100 investigators throughout China. The Center will be a partnership between Beijing’s premier biomedical institutions, among them the Chinese Academy of Sciences, the Academy of Military Medical Sciences, Peking University and Tsinghua University. (5)
In addition, other programs and centers around China are being created. Funding appears to be available for these multiple efforts and centers, but finding enough researchers is likely to be a challenge. However, if China is successful in meeting this challenge, they may establish a clear leadership position in this technology area.
So, is understanding the human brain a race or a global partnership? Only time will tell. Your thoughts?
- Stefan Theil, “Why the Human Brain Project Went Wrong—and How to Fix It,” Scientific American, October 1, 2015, https://www.scientificamerican.com/article/why-the-human-brain-project-went-wrong-and-how-to-fix-it/
- Megan Scudellari, “The Human Brain Project Reboots: A Search Engine for the Brain Is in Sight,” IEEE SPECTRUM, June 21, 2017, https://spectrum.ieee.org/computing/hardware/the-human-brain-project-reboots-a-search-engine-for-the-brain-is-in-sight
- Hideyuki Okano et al, “Brain/MINDS: A Japanese National Brain Project for Marmoset Neuroscience,” Neuron 92, November 2, 2016, https://www.cell.com/neuron/pdf/S0896-6273(16)30719-X.pdf
- David Cyranoski, Nature, August 17, 2017, https://www.nature.com/news/china-launches-brain-imaging-factory-1.22456
- David Cyranoski, Nature, April 5, 2018, “Beijing launches pioneering brain-science centre: China’s much-anticipated brain initiative finally starts to take shape,” https://www.nature.com/articles/d41586-018-04122-3